Blogs

Ten Takeaways from M in 2030 Project A Lens on the Future Panel

With the recent release of the Manufacturing in 2030 Project survey A Lens on the Future, MLC assembled an expert panel of speakers to discuss the results and bring context to the survey findings.

Moderated by David R. Brousell, the MLC’s Co-Founder, Vice President and Executive Director, the panel included Dennis McRae of West Monroe, Greg Wagner of EY, Chirag Rathi of Infor, and Joe Zakutney of NTT DATA.

Here are ten key takeaways from the discussion:

1. 84% of survey respondents expect an increased pace of digital adoption in the next decade

Dennis McRae, West Monroe’s Senior Partner and Practice Leader, Consumer & Industrial Products, noted that the acceleration rate depends on the size of the company, but he said the biggest thing is if you haven’t started your Manufacturing 4.0 journey in a meaningful way, now is the time to do it to maintain competitiveness.

“One of the first things you can do is really establish a team focused on digital with the right leaders, the right innovators, and also the right disruptors who can really challenge and do what leadership needs to get done,” McRae said.

2. 58% of survey respondents have autonomous factory operations on their radar by 2030

Chirag Rathi, Senior Director, Industry and Solution Strategy at Infor, pointed out that the desire for autonomous operations is not new and that General Motors was talking about this in the 1980s. Citing deep-learning and self-learning algorithms in machine learning, digital twins, blockchain, and autonomous transportation, he sees autonomous operation as a game changer, but he cautioned that full autonomy is unlikely in many circumstances.

“The cost of doing full autonomy in most industrial manufacturing processes might be too high,” he said. “So you will have part autonomy in several manufacturing arenas where the business case makes sense, but it will be a decision made on a case-by-case basis.”

3. 76% believe manufacturing should adopt an AI code of ethics

For Joseph Zakutney, NTT DATA’s Vice President, Manufacturing Industry Consulting and Digital Transformation, thinking about AI’s future means protecting against biases and cyberattacks, while accounting for safety.

“Procedures will need to be put in place to make sure that we’re complying to [a code],” he said. “We need to make sure that the software that we are releasing is fair, reliable, explainable, takes data protection and government regulations into consideration, and is focused on the well-being of society.”

4. Almost half of respondents indicated they expect workforce shortages to continue through 2030

Traditionally, manufacturing doesn’t have the best image according to Greg Wagner, EY’s Data Driven Manufacturing Leader. It is considered dirty, loud, and can be physically intense at times, but Wagner pointed out that those seeking purpose-based work should be attracted to manufacturing. The old adage of “being a cathedral maker and not a bricklayer” fits here, according to Wagner.

“If we change the paradigm and what we’re looking for, the types of job experiences we can give people, and use automation to get rid of some of those menial tasks that people don’t enjoy and free up their capacity to focus on bigger problem solving, it will mean more impactful types of roles,” Wagner said. “That’s going to really start to attract people and start to soften some of that gap we see right now in hiring.”

5. 81% of manufacturers are looking for greater speed and flexibility

When we think about speed and flexibility, what people really want is responsiveness, according to Wagner.

“If we really want to be able to respond quicker, we need to know what’s going on and we need to invest in better end-to-end visibility of what’s happening within our factories and what’s happening across our network so that we can be more adaptive and have the right insights to drive that change,” he said.

McRae added, “There’s a big opportunity for manufacturers in terms of connecting with their customers, building that client experience, and really monetizing a lot of the data that’s already in the business.”

6. By 2030, 50% of respondents believe digital adoption will be a game changer.

For Rathi, we’ll be closer to Industry 5.0 by 2030 with hyper-customization, responsive and distributed supply chains, and business model innovations. In fact, Rathi said we already have the building blocks to make this a reality.

“We have certainly got a lot of the raw materials to make that transformation happen,” he said. “So we will have a lot of transformative changes by that time period.”

7. Digital acumen is important across functions and at various leadership levels

One challenge McRae sees is getting everyone on the same page using the same language so that data assets are understood across company levels by all who manage data and products in the business.

“It’s not just around different levels, but also across functions,” added Wagner, noting that there is a wide array of digital understanding and how those technologies can be applied.

8. Hiring for a digital background versus a subject matter expert depends on the project

“I think we’re seeing the rise of data scientists and citizen data scientists at some organizations. At the same time a lot of data DIY products are becoming available, and they will become more prevalent by 2030, meaning that people with subject matter expertise will be able to basically design and develop their own data science projects,” Rathi said. Because of that, he believes subject matter experts will be in higher demand in most cases vs. data scientists.

9. For companies slowing down their digital projects due to the economy, focusing on specific things can help prevent losing ground

“Digital adoption is really a people play right now,” said Zakutney. “I’d stay focused on people and process, because ultimately, that’s what you’re going to end up automating [when funding comes back].”

“You can’t quit your digital investments,” added McRae. “If you don’t become digital, you’re going to be left behind. At the same time, prioritizing those digital investments specifically around areas that are going to improve your customer experience and take costs out over the next few years are going to help you win.”

10. Beyond the panel discussion, the survey report provides insightful data about the future of manufacturing

The MLC’s Manufacturing in 2030: A Lens on the Future research survey includes front-line insights from over 260 senior manufacturing industry executives, spanning multiple functional roles, and representing large-, medium-, and small-sized manufacturing companies from multiple industry sectors. Armed with this rich combination of real-world predictions and forward-thinking understandings, the MLC hopes that manufacturers can better plan their longer-term future and find ways to enhance their value, competitiveness, and contribution to society. Download the complete survey data and report.

Blogs

Product Communication Disorder

How the documentation deficit is undermining Industry 4.0

The manufacturing industry has spent a lot of time, effort and money on making its processes more efficient over time. And now the industry is investing in the Industry 4.0 philosophy to minimize wastage and downtime, leveraging technologies including 3D printing, digital twins, and predictive maintenance. Powering all of these investments is data.

Late last year I had a number of conversations with manufacturing professionals who manage products throughout their lifecycles – from the 3D CAD design phase, through review, fabrication, sales and marketing, and even further into customer usage and after-sales. They each told similar stories of breakdowns in the processes for creating, distributing, and consuming content that transfers vital knowledge about their products. In addition, they all identified significant negative impacts stemming from these problems. Errors, delays, and missed sales opportunities were frequent complaints.

I came away wanting to know more about these problems, their outcomes, and the underlying causes. What is driving ineffective product documentation workflows and processes at organizations that otherwise appear to be investing heavily in efficiency-based initiatives and cutting-edge tech?

In a bid to find out, my company, Canvas GFX, surveyed over 500 manufacturing professionals across a broad range of verticals, including automotive and electric vehicles, aerospace and defense, new space tech, industrial machinery, and more. The results showed these challenges exist widely across the manufacturing sector, suggesting an endemic and interconnected problem.

We’ve dubbed this problem Product Communication Disorder. For many companies, Product Communication Disorder is perceived, managed – and often tolerated – as a series of departmental workflow challenges. The data suggests the problem cannot be solved unless assessed and addressed with a company-wide perspective.

Where have manufacturers gone wrong?

There are three distinct stages within documentation and knowledge transfer where problems arise, the first being the creation of product content.

As it stands, creating product communication content is time-consuming and complicated, requiring input from multiple team members across an organization. Our research highlighted how critically deficient current workflows are, with clear room for improvement. The stats lay the issue bare, with over 95% of manufacturing industry professionals reporting that projects or products at their company had suffered errors or delays as a result of inefficient workflows for the creation of product communication.

But the problem runs deeper than content simply being late or too time-consuming to create. While the data says these are both true, our survey also suggested that the processes underpinning the creation of content are themselves flawed. For more than one in three respondents (36%) workflow bottlenecks stemmed from too many people being involved in content creation. Meanwhile, the lack of skills or software needed to be able to properly visualize 3D models, the basis for many documentation illustrations, was cited by one third of respondents.

Collaboration is another area fraught with challenges. In fact, 73% of respondents in our survey said they had experienced product or project errors or delays in the past two years as a result of difficulty collaborating on content.

Just as content creation at manufacturing companies is fragmented in terms of departments, skills and software, the collaborative process also appears to want for some kind of central management. According to almost three quarters of survey respondents, a primary problem appears to be too many channels (including email, Microsoft Teams, Slack, and other voice and video calling solutions) being used to manage collaboration, review and feedback on product content. The result of this vital communication happening across a range of channels according to 3 in 4 respondents is that it is easy to miss feedback on important documentation and content.

Lastly, the survey revealed serious concerns around the ability of workers to access the most up-to-date documentation materials. For many organizations this appears to be a struggle, while the problem is aggravated by managing a range of different content formats. It’s vital to remember that consuming content is what this entire process is about.

Worryingly, 85% of respondents said that outdated documentation in circulation had resulted in errors and delays over the last four years, and over a third (36%) said their company struggled to manage the rate at which content becomes outdated. More alarming still is the large proportion of respondents who conceded that their company has difficulty ensuring everyone who needs access to content is able to access the most up-to-date version of each document (54%).

Canvas GFX Survey Results

Solidifying Industry 4.0 gains 

The overarching issue is that manufacturers spend heavily to update their processes to reduce defects and ensure products make it to market on time, documentation issues are continually undercutting those investments.

Perhaps the starkest illustration of the problem lies in the fact that 73% of respondents felt that inefficiencies in their product communication processes were undermining gains made through other technology initiatives.

But it’s not all doom and gloom, and there is a silver lining here. The findings pointed to evidence that manufacturing companies are looking to cure the problem, rather than simply manage the pain. While the data is clear, so are the actions companies can take.

By addressing their problems in product documentation, companies can take a huge leap in realizing the full potential that Industry 4.0 offers and maximize their investments in it.

 

About the author:

Patricia Hume is Chief Executive Officer of Canvas GFX.

Business Operations

Manufacturing in 2030 Megatrend: Ride the Power Curve

Get the Latest News

Get involved

Digital manufacturing is built on just five “cornerstones”—and the work done in those areas in the next decade and beyond will largely determine the success or failure of key aspects of manufacturing’s technological future, according to the Manufacturing Leadership Council, the NAM’s digital transformation arm.

The MLC says that developments in electronics, computer systems, communications technologies, software and cyber infrastructure will have a direct impact on advancements made in human-machine interaction, automation and robotics, and autonomous operation. We break these down below:

Electronics: Intel predicts that by 2030 it will be able to incorporate 1 trillion transistors on a single semiconductor chip.

  • Manufacturers will need that kind of power to enable computer systems and software to process much larger data volumes as they connect more plant equipment and people within their business ecosystems.

Computer systems: Manufacturers should expect a changing computer landscape as biological, physical and digital systems converge to offer more options.

  • Quantum computing and nanocomputing offer potentially greater computational ability, which will allow manufacturers to process more data faster.
  • Meanwhile, traditional computers will become lighter, thinner and more flexible. Different user interfaces, such as voice recognition, will progress.

Communications technologies: The years ahead will see manufacturers adopt 5G-based networks, which offer higher bandwidth and lower latency than prior technology.

  • Communications technology suppliers are already working on 6G networks, expected to become commercially available in 2030.

Software: Next-generation software applications, in addition to web and mobile capabilities, will support voice, wearables, touch and AR/VR to a greater extent than ever before.

  • These applications will be driven increasingly by artificial intelligence.

Cyber infrastructure: The cyber infrastructure that has been in development for the past two decades has allowed for separation between data and physical computing sources (i.e., cloud computing.)

  • Looking ahead, an infrastructure that brings together data from all sources with business and technology tools will facilitate innovation, R&D, operating models and business growth.

Manufacturing in 2030 Project: Ride the Power Curve is just one of the megatrends identified by the Manufacturing in 2030 Project, a future-focused initiative of the MLC. For details on more megatrends, industry trends and key themes for Manufacturing in 2030, download the MLC’s new white paper “The Next Phase of Digital Evolution.”

Blogs

Are Your People On Board?

Cultural Transformation Is the Key to Success in Digital Transformation

Hitachi Vantara Blog Post

Though once considered a radical concept in the eyes of some, the necessity of digital transformation is now embraced by most organizations. The question is no longer whether to digitally transform — it’s now how to do it. But often, those discussions focus myopically upon the technologies involved.

That’s a mistake.

People, after all, are the ones driving change. Technology is the tool they use to do so. If the attitudes, behaviors and goals of your organization’s people — your culture — are not on board with your digital transformation goals, your transformation will likely fail even if you have the right technology in place. Having clear alignment between your technical objectives and your company’s culture is essential for success — in fact, organizations that take a human-centric approach to digital transformation are 2.6 times more likely to see success.1

Five common business blockers to cultural change

There are several common stumbling blocks that may significantly impede your progress along the path to digital transformation. The most vexing challenges revolve around five key cultural issues:

  • Organizational data isolated in functional or hierarchical silos.
  • A lack of the skills needed to enable digital transformation.
  • The breakdown of inter-team communication and collaboration.
  • Cultural resistance to change rooted in lack of understanding of transformation goals.
  • Fear and worry about job insecurity, or a lack of psychological safety, among employees.

Any one of these cultural barriers presents a significant speed bump to the transformation process. The presence of all five within a single organization — not an uncommon scenario — wreaks havoc upon an organization’s efforts to transform.

Hitachi Vantara Blog Post 3

Stepping over those stumbling blocks

Transformation undeniably involves change — and change and human nature often have a stormy relationship. People tend to resist change, particularly when it makes them feel isolated or left behind. How can companies overcome these stumbling blocks to enable and encourage cultural change in support of digital transformation? The answer involves a mix of technology and people-centric management.

To eliminate data and skillset silos without disrupting your key business processes, you need to gradually build cross-functionality across teams. Consider using tools and techniques such as Kaizen (a management strategy that supports ongoing, incremental change), which many organizations have found to be crucial for success. A top-down commitment to opening silos is equally important; however, the true key to breaking down silos is about understanding, engaging and promoting collaboration across both the formal structures and the informal networks that exist across the organization.

Recently, research has found that the key to identifying and engaging these informal networks is by identifying influencers across an organization and engaging with them. Each silo represents a comfort zone for the group of employees that operates within that silo, and employees may be reluctant to move away from those comfort zones. By activating networks across the organization, company leadership can promote collaboration without incentivization.

Hitachi Vantara Blog Post 3Similarly, it’s essential to nurture teamwide collaboration and communication in ways that are nonthreatening to individuals and team cultures. While specialized skillsets and knowledge specific to a team (or even a single task) is valuable to the entire organization, individuals who hold that knowledge often consider themselves the owners of that knowledge — an ownership that they may be reluctant to surrender for fear of diminishing their own value. Commending employees for exceptional knowledge sharing and skill development creates a culture of collaboration while promoting candid communication.

Innovation culture and success factors for digital transformation

Leadership should also be sensitive to the language used in communicating transformation initiatives. Phrases such as “breaking down silos” can feel threatening to people working in those so-called silos. Functional areas with their own domains of expertise and knowledge exist for important reasons — and will continue to exist — so leaders should instead talk about “weaving silos together” to achieve cross-functional integration while preserving the benefits of domain expertise.

Adopting agile approaches serves to foster the evolution of cultural shifts across teams, enabling them to be more cross functional. Another tool that can be highly effective in breaking down a range of barriers to collaboration and communication — including differences in age, gender and ethnicity — is reverse mentoring, where younger employees are paired with executive team members to help those executives connect with a younger demographic. Creativity, too, is important when it comes to breaking down cultural cliques. Even discouraging teams from keeping to themselves in settings like company cafeterias can be effective.

Finally, executive leadership, like all other members of the organization, must also evolve. They must embrace the goals of transformation and become comfortable with the higher levels of ambiguity that characterize today’s marketplace.

That said, technology does play a major role in supporting digital transformation initiatives. The right technology can make all the difference in fostering the cultural shift necessary for successful digital transformation. Today’s digital tools can guide effective collaboration, enhance efficiencies, enable standardization and encourage innovation. For example, Hitachi designed a cross-functional 2-day Smart Manufacturing Solution Envisioning Workshop for Logan Aluminum that helped key employees better understand the benefits of specific digital transformation initiatives.

Transformation is really about people

Business organizations are often perceived as lifeless, faceless entities. But in truth, each organization is a collection of people — people who must work together to make the business successful. That’s why it’s so important that everyone in your organization is on board with both the processes and goals of transformation.

Ultimately, fostering positive cultural shifts among your people is the best way — and, realistically, the only way — to ensure that your digital transformation goals can be achieved. Because, in the end, digital transformation is all about your people; a journey begun for your people and achieved by your people.

Hitachi’s Social Innovation imperative is all about unlocking value for society through the power of technology and people. For more tips about getting ahead by thinking ahead, visit our Social Innovation page.

About the authors:

John Brinegar Hitachi VantaraJohn Brinegar, Director, IoT Solution Architecture, Hitachi Vantara

John Brinegar leads the Solution Architecture team at Hitachi Vantara, and has been leading IIoT projects at Hitachi customer sites for eight years. In addition, Brinegar led the architecture, development, and launch of Lumada Manufacturing Insights, an analytics platform for optimizing performance, maintenance and quality operations. He has extensive background deploying analytics systems into a variety of manufacturing sub-verticals, including electronics, pharma/biotech, metals, automotive, and others, along with IIoT software development and integration in telecommunications, health care, and enterprise markets.

David R. Brousell, Co-Founder, Vice President and Executive Director Manufacturing Leadership Council

David R. Brousell is the Co-Founder, Vice President and Executive Director of the Manufacturing Leadership Council, the digital manufacturing arm of the National Association of Manufacturing, the largest association of manufacturers in the United States.

In his role as head of the MLC, Brousell sets the strategic direction of the organization and oversees day-to-day activities across the MLC’s portfolio of live and virtual events and thought-leadership content generation. Brousell is a member of the NAM Leadership Team and is also a member of the MLC’s Board of Governors. In his more than 40-year career, Brousell has served in numerous leadership positions in companies large and small.

 

1Errol Gardner, Norman Lonergan, Liz Fealy, “How transformations with humans at the center can double your success,” EY, June 24, 2022, https://www.ey.com/en_gl/consulting/how-transformations-with-humans-at-the-center-can-double-your-success.

Blogs

Digital Tech is Cornerstone for Sustainability

MLC Master Class session with NTT DATA and Microsoft lays out formula for net-zero success

In his introduction to MLC’s recent Master Class session, Harnessing Digital Technology for a Sustainable Future, Paul Tate laid out the high stakes involved in sustainable manufacturing.

“This is one of the most existential challenges and sources of opportunity for the manufacturing industry over the next decade,” said Tate, MLC’s Co-Founding Executive Editor and Senior Content Director.

To get to a sustainable, net-zero future, application of both data and analytics are critical. During the Master Class, expert speakers Baskar Radhakrishnan of NTT DATA and Rebecca Christiansen of Microsoft defined the challenges and described how digital technology can help manufacturers accelerate decarbonization.

According to Christiansen, Microsoft’s Americas Azure IoT Specialist Director, nearly one-third of the world’s energy consumption and roughly 20% of CO2 emissions are attributable to the manufacturing industry. To help combat climate issues, she pointed to the 5,000 companies that have committed to net zero as part of the United Nations Race to Zero Campaign.

“While a lot of companies have made commitments, building the strategy, backing it with detailed plans and execution methodologies has been really tough,” Christiansen stated. “It’s really up to all of us, collectively, to figure out what technologies and what strategies should be implemented to go after this.”

Further, Baskar Radhakrishnan shared this must be looked at not only through the strategic lens, but also from a tactical, operational technology perspective.

“From a technology perspective, there is a lot of data available coming from the supply chain, coming from your OT systems, coming from all over your networks,” said Radhakrishnan, NTT DATA’s Strategic Advisor for Manufacturing. “But how you derive some meaningful insight out of that is a huge challenge.”

To show how sustainability investments can provide value, NTT DATA and Microsoft have partnered together to demonstrate quick return on investment for their customers. They have designed a production-level pilot that can be set up in a small-scale production environment at a customer site in less than 12 weeks. This allows the implementation team to show its organizational leaders the opportunity, value and positive ROI associated with investing in an energy management or a waste reduction system.

Beyond demonstrating ROI with this pilot, it is important to also look at sustainability from a business objectives perspective.

“There is a gamut of technologies involved,” Radhakrishnan said, “so technology is an enabler. It’s not going to solve your problem unless you have the process straightened out and unless you identify the range of possible options for transitioning towards the net-zero targets.”

In part because organizations cannot improve things they can’t measure, NTT DATA and Microsoft are using the Azure digital twin to help companies meet their sustainability goals.

“We tackle the problem of data by connecting directly to energy data sources – be it power meters, submeters on equipment, or utilizing building management systems. From there we create both real-time visibility to energy usage and provide analytics about the energy usage, trends, and patterns,” said Radhakrishnan.

According to the Master Class speakers, manufacturers shouldn’t be afraid or overwhelmed with the prospect of using digital twins in this process. While they can seem complex, they are simply virtual replicas of physical assets, or “high-fidelity digital representations of the physical world,” as Christiansen called them.

“Once you’ve got [the physical world] modeled, you can garner insights, you can look at consumption, you can look at interaction, you can think about how you can manipulate or even identify fault detection or anomalies in advance, which help you really optimize keeping your manufacturing line healthy, runtime up, and throughput maximized,” she said.

The outcomes from using digital twins are clear, including improved production capacity and inspection efficiency with reduced energy usage and CO2 emissions. Plus, the twin allows the user to look at energy management on many level: at the product, factory, or even supply chain levels. That includes progress toward net-zero goals.

“That’s extremely important because you’re completely taking the guesswork out of this,” said Radhakrishnan. “You need a systematic way of tracking, reporting, recording, and being able to model and show progress not only to your board but also to your external stakeholders as well as investors.”

In fact, he said, if you are not making progress, the digital twin in combination with artificial intelligence allows you to model and fix problems and see how you are progressing toward your vision.

Beyond the technology itself, the final piece to the puzzle is creating an organizational culture with proper funding, training, and resources.

“We’re seeing a lot of organizations hire chief sustainability officers,” said Christiansen. “That’s an incredible start, but that’s a single person. It has to come through the entire culture of a company.”

If the culture is not there, she warns, it will be a challenge to implement these changes.

As the Master Class demonstrated, net-zero goals are challenging, but they are also achievable. Digital technologies like NTT DATA and Microsoft’s production-level pilot can build a case to create sustainability programs that create substantial results. Establishing goals and a strategy, utilizing digital twins, analyzing the data and analytics, and creating an organizational culture where the entire company is behind the mission are all key to accelerating a decarbonization effort.

Visit NTT DATA’s sustainable manufacturing page to learn more about this topic.

Blogs

The Next Phase of Digital Evolution: Business Model Innovation

 

Data mastery and AI are key drivers for the future of manufacturing, say industry experts during a discussion of the MLC’s new Manufacturing in 2030 Project white paper.

“Manufacturing is poised to unleash the next engine of production,” declared Manufacturing Leadership Council (MLC) Co-Founder David R. Brousell, in his opening remarks at the recent launch of the MLC’s white paper on the future of the industry, Manufacturing in 2030: The Next Phase of Digital Evolution.

David R. Brousell, MLC

The pandemic taught us, noted Brousell, that manufacturing needs to be able to act with greater agility and be better prepared for future disruptions, whatever form they may take. The MLC recognized the urgent need for manufacturers to take a longer view of things to come, he explained. The Manufacturing in 2030 Project has been created to help enable those companies to envision what manufacturing might look like by the year 2030, to better plan their future, and to help their leaders find new ways to enhance value, competitiveness, and their contribution to society.

Brousell was joined by a panel of industry experts from Manufacturing in 2030 Project partners EY, Infor, NTT DATA, and West Monroe, plus MLC Board Vice Chair, Dan Dwight, CEO of the Cooley Group. They went on discuss key highlights from the forward-looking 52-page white paper, which explores the multiple megatrends and industry themes that will dominate the manufacturing world by 2030, from demographic shifts and global economic trends to rapid advances in technology, new approaches to workforce development, and the importance of greater sustainability.

Optimism for the Future

Randal Kenworthy, West Monroe

“For me, there are three reasons for optimism about manufacturing’s future,” commented Randal Kenworthy, Senior Partner and Consumer and Industrial Products Practice Leader at West Monroe. “The levels of investment in digital solutions that we are already seeing in manufacturing, the widespread recognition that manufacturing is essential to the future of the U.S. economy, and the opportunity to address one of the most existential challenges facing mankind: climate change. We have to solve this. Failure is not an option.”

“I certainly think digital is going to be the way of operation for survival in the future,” added Baskar Radhakrishnan, Senior Director, Manufacturing Industry Solutions at NTT DATA. Many of today’s factories are almost unrecognizable from the way they were 10 years ago, he observed. “And the industry is only going to continue to evolve. So, I envision future manufacturing organizations to be data driven digital enterprises, fully hyperconnected, with more distributed, agile, and value-driven ecosystems.”

Brad Newman, EY

Highlighting the impact of the numerous disruptive forces at play today, Brad Newman, Advanced Manufacturing & Mobility Industry Market Leader, Americas, at EY, noted that, “The collective sum of all those forces is creating a bias for action and a need for change.” The industry already has the building blocks and the technology tools in place today, he continued, “which will help business models to evolve to ensure functions are more connected and help build better and smarter products for people in more sustainable ways. All of this will make the manufacturing industry much more rewarding for all the workers and stakeholders involved.”

The Challenge of Complexity

While the accelerated adoption of ever-more powerful and intelligent digital technologies over the next few years will underpin many of those transformational changes, the huge increase in the volumes of data generated by those technologies will have its own challenges.

Andrew Kinder, Infor

“It may take another 10 years to get to real maturity with AI, but that’s the technology we can see being highly important for the future,” commented Andrew Kinder, Senior Vice President International Strategy at Infor. “There are fantastic opportunities around AI and it’s only just beginning. But I think one of the challenges of that transition is that we have to pay more attention to data.”

Traditionally, noted KInder, manufacturing has always talked about people, processes, and technology, but he believes that companies now need to add data to that essential mix. “We’re already good at getting data, at streaming it into data lakes, and we’re getting better at turning it into actionable insights,” he added. “But now we need to focus much more on how we mature our data mastery for the years ahead.”

Dan Dwight, Cooley Group

“But before you get to data mastery,” argued MLC Board Vice Chair, Dwight, “you first have to go from legacy to smart tech. The next phase then gets more complicated as the amount of data compounds and we start to adopt new AI approaches with complex algorithms. To make that work, we first need to develop confidence that the data we are gathering is telling us the right story and that becomes more complex as data volumes increase and spread across the enterprise. To cope with that, manufacturers need to be constantly rethinking their business model.”

And it’s not just about rising complexity within the four walls of the company, added EY’s Newman. “The bigger picture is looking at the end-to-end value chain,” he said. “For example, digitizing the supply chain with more accurate forecasting and optimized planning puts pressure on companies along the chain to catch up. As supply chains become more intelligent and complex, companies will need to be more flexible and agile to create more scalable and responsive digital platforms.”

New Business Models

Baskar Radhakrishnan, NTT DATA

However, warned Radhakrishnan at NTT DATA, “digital will become yesterday’s advantage if organizations are not thinking about moving to the next level. They must think differently about their transformation initiatives so that the traditional ways of operating become a thing of the past. So, with the people, processes, and digital infrastructures they create using new digital technologies, manufacturers should think about reinventing their business models with outcome-based business models, or usage-based business models, or product as a service, and offering their customers more customized products and services.”

Yet that’s a big step for many manufacturers, noted the MLC’s Brousell, and for some it may be a little scary.

“But to me,” added Cooley’s Dwight, “all manufacturing companies, regardless of their relationship to M4.0, demand reinvention. To rest too firmly on last year’s expectations and commitments, prevents your ability to evolve. As I say all the time, the only constant is change – and I don’t mean incremental change.”

“At Cooley,” he continued, “we went through a deep cultural transformation to break down silos to drive collaboration with the objective to become more adaptive and more agile. But for companies who are not change driven, who have not been investing in digitization, who are not rethinking and reinventing, they are the ones who are failing to see the power of digitization and the power of transforming on a constant basis.”

Leadership Advice for the Future

Brousell concluded the discussion by asking the panel: ”What’s your most important piece of advice for manufacturing leaders as they head to 2030?”

“Put together your strategic vision and plan,” responded Kenworthy at West Monroe, “If you don’t have that strategic vision for 2030, you need to start thinking about it now. That will set your roadmap for your digital roll out and plan for the future.”

“I think there a number of dimensions,“ added NTT DATA’s Radhakrishnan, “Develop a fully integrated strategy with very clear transformation goals; leadership commitment all the way from the Board and CEO to middle management; having the right team of high caliber tech talent and subject matter experts; adopt an agile mindset that will drive the broader adoption of digital technology; track progress and measure well-defined success; and, finally ensure there are business-led, modular, technology and data platforms to enable the real transformation”.

“Leaders also need to focus on people,” suggested Infor’s Kinder. “The talent shortage is global and it’s not going to go away. Technology will help, of course, and there is already a change from location centric, to human centric, so leaders need to focus on the reduction or elimination of any non-value-added tasks when intelligent equipment can do that and leave humans to do the high value decision making work. Focus on the people and bring the people with you.”

“Building a digital business ecosystem is only going to reach its full potential when the entire organization is digitally driven, and driven seamlessly across traditional functional lines,” said Dwight. “As the white paper says: ‘Digital is agnostic about functional boundaries.’ I believe this transformation is going to be the most difficult piece of digital evolution that leaders are going to have to grapple with.”

EY’s Newman also added his final thoughts: “While the future will be centered on cross-industry collaboration,” he observed, “I look forward to seeing the manufacturing industry take the lead when it comes to innovating new business models and engaging ecosystems. I think our ability to do this will wildly change the trajectory of the industry, driving better investments across safety, sustainability, technology, and most importantly, the development of our people.”

———-

* Download the full MLC White Paper, Manufacturing in 2030: The Next Phase of Digital Evolution

* Listen to the insights shared during the Manufacturing in 2030 White Paper Panel Discussion

Blogs

Why Women’s Voices in Manufacturing Matter

What do women in manufacturing think about the business they’re in? It’s not something we hear a great deal about, which is perhaps not surprising. Manufacturing is a male-dominated industry, after all. For half a century women have represented around 30% of the U.S. manufacturing workforce, peaking at 33% in 1990, according to the U.S. Census Bureau (USCB).

By number, most female employees are found in production, transportation, and material moving. They are assemblers and fabricators, says the USCB, inspectors and testers, among other roles.

But, proportionately, women enjoy far greater representation in the sales and office-based roles of manufacturing companies, where they are in the majority, holding 51.7% of the roles.

So it’s important to know what they think. Earlier this year we surveyed over 500 manufacturing professionals from a range of industries, including aerospace and defense, automotive, space, electric vehicles, autonomous vehicles, to understand the challenges associated with product-related communication and knowledge transfer.

In line with the USCB data, female employees accounted for 28% of responses. And while we did not set out to measure gender distribution across industries (and so, offer no conclusive insight) there was some interesting variation by sector. For example, women accounted for just 21% of responses in the aerospace and defense sector while in the emerging SpaceTech sector they accounted for 35%, and in the automotive sector 32%.

When it comes to existing product communication workflows – the ways in which documentation describing products and processes is created, shared, and consumed – the data was clear: 71% of female employees believe there is room for improvement in these workflows, and the same proportion believe documentation challenges at their organization are getting harder to manage as the company grows. Ninety-seven percent of female respondents said they had seen products or projects hit by errors or delays as a result of documentation being late, inaccurate or unclear, or outdated.

Digging further into specific elements of the workflows, and perhaps indicating areas where female employees may have greater insight, women were more acutely concerned about bottlenecks associated with the creation of product documentation than their male counterparts. Sixty-five percent of female respondents reported that creation bottlenecks are a frequent problem at their organization compared to just 51% of male respondents.

They also felt more strongly that managing distribution of, and access to, important documentation was a problem, with 43% of women saying this was difficult for their organization to manage, compared to 36% of male respondents.

With documentation creation and consumption routinely involving collaboration between separate departments, we asked respondents how well different disciplines such as engineering and marketing professionals were able to collaborate. Here, female respondents were perhaps more optimistic than their male counterparts, with 30% saying there were no difficulties, compared to only 20% for male respondents.

In terms of the outcomes of these workflow challenges, women again registered somewhat higher levels of concern than men. Forty percent of female respondents said they had witnessed wastage through product defects as a result of product documentation being delayed, inaccurate or unclear, or outdated, compared to 38% of male respondents. And 38% of women said the same problems had led to delayed or missed sales opportunities, compared to 32% of male respondents; interesting considering the USCB data which showed higher numbers of female workers in manufacturing sales roles.

Perhaps more worryingly, one in three female manufacturing employees believe their organization is not actively seeking ways to improve documentation workflows and processes, which suggests a huge opportunity for improvement if the problems these women are identifying can be highlighted and understood at the leadership level.

So what does success look like for women in manufacturing? Well, with 37% of female respondents saying the applications used in documentation workflows are unsuited to the task, 33% saying there are too many applications involved, and 39% saying there are too many people involved, the data suggests women want to see more autonomy and efficiency in these crucial knowledge transfer workflows.

More than 2 in 3 of female respondents said it would be beneficial to use a single application for the creation of all types of product content, while 62% said it would be beneficial if all collaboration were also to happen in one application channel. Meanwhile, 66% said they believed it would be beneficial if the company was able to track and measure document access and usage.

As in any sector, women have an important role to play in manufacturing and it is essential we understand their perspective on the challenges companies face. A clear takeaway from this research is that female employees believe the manufacturing industry faces a defining challenge when it comes to poor communication and product documentation, which is intricately connected to the success of the entire organization. And when the processes in place break down, the result is self-inflicted damage that could – and should – have been avoided.

About the author:

Patricia Hume is Chief Executive Officer of Canvas GFX.

Business Operations

Manufacturers Keep Pace with Technology Deployment

Get the Latest News

Get involved

Manufacturers are staying on top of the tech game.

That was among the chief findings of a new polling conducted by the Manufacturing Leadership Council, the NAM’s digital transformation division. The annual Transformative Technologies in Manufacturing research survey aims to reveal data on current realities and expectations for manufacturing in the near future and in the years to come.

Rate of adoption: The most surprising data point was that 89% of respondents said they expect their company’s rate of adoption of disruptive technologies to increase over the next two years. That figure is up from 51% just one year ago.

Why disruptive technology? Reducing costs and improving operational efficiency were the most-cited reasons for investing in digital tech, with 83% of respondents identifying these as important motivations.

  • Improving operational visibility and responsiveness came in second, at 61%.
  • Other reasons include increasing digitization (40%), creating a competitive advantage (36%) and improving quality (30%).

Top near-future trends: Digital-twin modeling and simulation software, augmented and virtual reality, high-performance computing and further investments in supply chain management software will lead the next wave of investments during the coming year or two.

Not of interest: The survey found that quantum computing and blockchain technology are currently of the least interest to manufacturers.

The role of AI and ML: Artificial intelligence and machine learning usage continues to grow among manufacturers.

  • Nearly 50% of respondents indicated that their companies have implemented AI, either on a single-project basis (40%) or in all factories (9%).
  • About 75% said they are applying AI and ML to reduce costs and improve productivity and processes.
  • Approximately 60% indicated they had used AI and ML for preventative/predictive maintenance or quality improvement.

Misunderstood metaverse: A new topic covered by this year’s survey, the manufacturing metaverse, was perhaps the least understood by respondents.

  • About 38% said they were still trying to understand the technology and concept, 20% said they have no plans to adopt a manufacturing metaverse approach and 15% said they didn’t know how to respond to the question. 

The last word: “Manufacturers are finding more use cases and business benefits for increasing their use of digital technology, and the pace of adoption is accelerating,” said MLC Co-Founder and Vice President and Executive Director David R. Brousell.

  • “The research confirms that manufacturing is headed for an agile, connected and collaborative future driven by technology and fueled by innovation.”
Plant Tour reviews

Imagining an Industrial 5G Future at Ericsson

Members of the Manufacturing Leadership Council were given a glimpse of the future of factory connectivity at the Ericsson USA 5G Smart Factory in Lewisville, Texas and Imagine Studio Tour in Plano, Texas. Exploring the theme Effectively Managing 5G and IoT to Drive Smart Manufacturing, tour participants learned about a highly autonomous and sustainable operation that manufactures Ericsson’s portfolio of 5G products, including advanced antenna radios.

Ericsson USA 5G Smart Factory

The Lewisville facility was recognized as both a Global Lighthouse and Sustainability Lighthouse by the World Economic Forum, just one of six factories worldwide to win both designations. The Smart Factory has more than 400 employees from 36 different countries.

5G is hailed for its promise in industrial settings due to its low latency and high reliability. It is considered critical infrastructure by the federal government, meaning it is considered so vital that it is designated for special protections and falls under national policy for maintaining its security, resiliency, and function. Additionally, an industrial 5G network requires fewer wires and fewer access points vs. advanced wifi networks. For example: In an 80,000-square foot area of the production facility, just two 5G radios are required for the network. The same connectivity on wifi would require 24 routers.

The plant utilizes automation, interconnected equipment, machine learning and real-time data enabled by IoT solutions and a private 5G network. Constructed in 2019, the facility was built in less than 180 days and delivered its first commercial 5G radio in July 2020. It produces a range of 5G radios for private networks and deployment by cellular carriers for their nationwide networks.

The surface mount assembly lines at the Ericsson USA factory are the longest in the United States at 271.6 feet. The factory layout can be described as a hub-and-spoke assembly system connected with automated mobile robots (AMRs). The equipment includes AMR docks, which allows the AMRs to move components through various stages of assembly. This allows operators to stay focused on production vs. tracking down necessary components.

Ericcson USA - North America Imagine Studio

The manufacturing team at Ericsson says they are focused on “sensible automation” as not everything makes sense to fully automate – for example, final assembly is done with human operators working with collaborative robots. In other areas where it is practical, faster and more efficient industrial robots are deployed instead. The plant runs on a private network separate from Ericsson’s corporate network, and all of its network solutions are hosted on-premises.

On the sustainability front, Ericsson is reaching for an ambitious Net Zero goal in all of its operations by 2030, with a goal of being Net Zero in its entire value chain by 2040. The Ericsson USA factory is 24% more energy efficient vs. comparable buildings, using renewable energy through 1,646 solar panels that generate 17% of the energy required for the factory. All of the energy the facility uses is from either wind or solar sources. It also has two 40,000-gallon tanks for collecting rainwater, which is used for maintaining its drought-resistant, native species landscape and in the facility’s restrooms.

After touring the production facility, attendees were taken to Ericsson’s Imagine Studio where they were given a deep dive into the performance differences between 5G and other previous generation wireless networks, the considerations necessary when planning for 4G/5G connectivity needs, an overview of private cellular networks, and identifying top 4G/5G-enabled use cases for the factory. Topics of discussion included how to align business goals with network deployment, how to select partners and system integrators, understanding risks, and how advanced networks can be deployed on both new and legacy production lines.

As for its future goals, the Ericsson team says that while product variability is currently a challenge from an automation perspective, they aim to control production with AI and machine learning for even greater autonomous operations; 5G will be a crucial component to handling the variability. They describe the process of adjusting their highly automated operations as a journey that is about learning as a team with production, network engineering, and product development. They are also actively pursuing a production digital twin.

Ericsson’s M4.0 philosophy would be good for any manufacturer to emulate: Continuously try new things and evaluate them. Be willing to fail. Aggressively chase production efficiency. Envision the type of company culture that is necessary to be innovative and to meet business goals. And most of all, imagine what is possible and set that as the highest goal.

 

 

 

 

 

 

 

Blogs

Digital Solutions Drive Sustainability in Manufacturing

It’s an interesting parallel: the global drive toward sustainability may directly improve carbon emissions and help slow climate change to the benefit of all. And correspondingly, manufacturing companies that successfully transform to contribute to global sustainability will positively enhance their own ability to thrive.

The reverse, of course, is also true — manufacturing companies that fail to meet global environmental, social and governance (ESG) benchmarks will likely find themselves falling behind competitors, being shunned by consumers and, ultimately, facing irrelevance.

It’s a stark reality and a daunting task. Manufacturers must successfully digitally transform in ways that enhance sustainability. But the potential benefits of that success are virtually unlimited.

The digital transformation question is no longer a question

A couple of decades ago, a discussion about digital transformation and sustainability in manufacturing might have involved a number of participants advocating both for and against the need for change — or at least how much things would really need to change. But now, driven by tightening regulations, pressures from global markets, the increased focus on ESG metrics and shifting customer preferences, digital innovation is no longer optional — and manufacturers know it.

According to a recent survey conducted by IndustryWeek and Hitachi, 99% of manufacturing executives consider their company to be committed to sustainability initiatives when compared to others in their industry.

Manufacturers are also beginning to recognize that the benefits of success in this transformation extend beyond the primary goals of operational efficiency, increased profitability, and productivity and safety improvements. Respondents to the survey also noted the potential for significant improvements in:

  • Market share
  • Influence on industry and society
  • Ability to attract new talent
  • Brand recognition and reputation
  • Employee retention and morale

But knowing you need to transform and knowing how to do it are two different things. Most manufacturing companies are aware of the need to digitally transform, and they know that the changes involved will be substantial. These top three areas of focus emerged in the survey as the most important for meeting sustainability goals:

  • Production processes. Streamlined processes that save energy, reduce waste and increase visibility all contribute to making factories more sustainable.
  • Workforce training. Manufacturers can maintain and improve sustainability-based work practices and smart-work behaviors by using digital information-sharing tools to reduce the knowledge drain as skilled workers retire.
  • Supply chain. More efficient supply chains can save energy, reduce warehouse storage needs and streamline logistics to reduce truck rolls — all of which help lower carbon footprints.

For enhanced sustainability, manufacturers must pursue ways to improve efficiency, lower their energy usage, integrate alternative sources and energy management systems, and lower their carbon footprint from end to end.

And it all starts with knowing where you are today.

Hitachi Blog Digital Solutions Drive Sustainability in Manufacturing

Sustainability in manufacturing is built upon a foundation of data

Manufacturers that are exploring digital transformation initiatives know that data will form a large part of the answer to the sustainability challenge. In fact, the survey respondents consider data analytics the most important technology for managing sustainability, with a primary focus on machine learning and artificial intelligence (AI).

Unprecedented quantities of data are now available to organizations, but deriving insights from that data quickly and efficiently requires digitalization. Digital technologies that leverage that data into operational benefits and enhanced efficiencies are the key to enabling quantum improvements in manufacturing sustainability.

Leading manufacturing sustainability by example

Hitachi is a leader in providing sustainable solutions for manufacturing, having developed and operationalized many of the cutting-edge digital technologies that companies use to meet their ESG goals. For example, Lumada Manufacturing Insights helps manufacturers such as Logan Aluminum develop data-driven operations, increase supply chain visibility, run predictive models and enable smart factory solutions that use data to drive productivity, lower asset downtime, extend remaining useful life, and promote sustainability in manufacturing processes.

Hitachi is also one of the largest manufacturing companies on the planet. Its global presence in both manufacturing and technology uniquely positions it as a leader in sustainability solutions. Many technology companies offer recommendations for bolstering manufacturing sustainability, but Hitachi offers advisory services, hands-on guidance, domain and business process expertise, and more — all delivered and backed up with hundreds of use cases and successful delivery examples. Hitachi’s Omika Works factory, for example, was recognized by the World Economic Forum in 2020 as an advanced Fourth Industrial Revolution Lighthouse, an honor given to factories that are world leaders in the adoption and integration of groundbreaking technologies.

But the bottom line is Hitachi’s reputation for leading by example. The company is committed to achieving carbon-neutrality at its industrial facilities by 2030 and investing $13 billion over the next few years in green technologies research and development.

Transformation should be simpler.

Hitachi stands ready to help manufacturing companies achieve their sustainability goals. Recent sustainability-enhancing successes achieved by Hitachi manufacturing customers include:

  • Improved operating rates achieved by consolidating multiple factories for automobile parts manufacturing companies
  • Improvements in equipment operation rates and reduced manufacturing lead times for an agricultural machinery manufacturer
  • Reduced productivity losses from equipment stoppages and improved preventative maintenance processes for a printed circuit board manufacturer

Learn more about how Hitachi can help you more effectively leverage your data and achieve your sustainable future.

About the authors:

David McKnight HitachiDavid McKnight is Director of Digital Manufacturing Solutions, Hitachi Vantara. McKnight joined Hitachi in 2016 with an eye to broaden his work in industrial IoT and digital manufacturing. At Hitachi Vantara, he is driving manufacturing operations excellence solutions with clients across various industries. Prior to his tenure with Hitachi, McKnight has focused on providing industrial automation and SAP manufacturing solutions throughout the world. He is passionate about enabling manufacturers and their operators, supervisors and management to employ technology to maximize productivity, quality, safety and flexibility.

Shamik Mahta_HitachiShamik Mehta is the Director of Digital Services and Solutions Marketing for Hitachi Vantara. Mehta has around 25 years of experience in product and strategic marketing in IoT, data management and data analytics, semiconductors, renewable energy, and e-mobility solutions. He’s held roles in chip design, pre-sales, product management and marketing for technology products, including software applications and data platforms for industrial applications. His experiences include six years at SunEdison, once the world’s largest solar, wind and energy storage independent power producers, leading product management, operations, business development and marketing.

Mehta has experience managing global product marketing, GTM activities, thought leadership content creation and sales enablement activities for technology and software applications for the smart energy, electrified transportation and manufacturing verticals. Mehta is a Silicon Valley native, having lived, studied and worked there since the early 90s.

 

 

View More